␣␣␣␣␣A = 81
  1. Definition
    00121+127325604305 85 A DEC87.417497202B8 F2TNH086
  2. Reference
    00031 0 40000 0 00121 28ADDA 8,27 SCALING F2TNH029
␣␣␣␣␣B = 82
  1. Definition
    00122+046477071523 86 B DEC617.9722695B12 F2TNH087
  2. Reference
    00033 0 50000 0 00122 30CLAB 12,23 F2TNH031
␣␣␣␣␣C = 83
  1. Definition
    00123+010676467774 87 C DEC.03465735903B0 F2TNH088
  2. Reference
    00037 0 20000 0 00123 34MPYC 00,35 8,27 F2TNH035
␣␣␣␣␣D = 84
  1. Definition
    00124+237214030720 88 D DEC9.9545957821B4 F2TNH089
  2. Reference
    00042 0 40000 0 00124 37ADDD 4,31 F2TNH038
␣␣␣␣␣F = 32766
  1. Definition
    77776 95 F EQU−2 F2TNH096
  2. References (15)
    00000 0 60100 0 77776 3 TANH STOF F2TNH004
    00004 0 50000 0 77776 7CLAF TEST IF ARGUMENT LESS THAN .00034 F2TNH008
    00012 0 50000 0 77776 13 T6 CLAF F2TNH014
    00026−0 60000 0 77776 25STQF F2TNH026
    00027 0 20000 0 77776 26MPYF COMPUTE FRACTION SQUARED F2TNH027
    00043 0 40200 0 77776 38SUBF 4,31 F2TNH039
    00045 0 50000 0 77776 40CLAF 5,31 NUMERATOR EQUALS 2F F2TNH041
    00057−0 60000 0 77776 50STQF F2TNH051
    00061 0 30000 0 77776 52FADF F2TNH053
    00064 0 30200 0 77776 55FSBF F2TNH056
    00071 0 56000 0 77776 60 T2 LDQF COMPUTE TANH 4LOGE IF X SMALL F2TNH061
    00073 0 60100 0 77776 62STOF F2TNH063
    00074 0 56000 0 77776 63LDQF F2TNH064
    00075 0 26000 0 77776 64FMPF F2TNH065
    00112 0 50000 0 77776 77CLAF F2TNH078
␣␣␣␣␣M = 32767
  1. Definition
    93 ERASABLES F2TNH094
    77777 94 M EQU−1 F2TNH095
  2. References (6)
    00022 0 60100 0 77777 21STOM F2TNH022
    00053 0 40000 0 77777 46 T1 ADDM F2TNH047
    00054 0 60100 0 77777 47STOM COMPUTE TANH X FROM E TO THE X F2TNH048
    00056 0 24100 0 77777 49FDPM F2TNH050
    00060 0 50000 0 77777 51CLAM F2TNH052
    00063 0 50000 0 77777 54CLAM F2TNH055
␣␣␣␣␣T = 32764
  1. Definition
    77774 97 T EQU−4 F2TNH098
  2. References (17)
    00032 0 60100 0 77774 29STOT 8,27 F2TNH030
    00034 0 22100 0 77774 31DVPT 8,27 4,31 F2TNH032
    00035−0 60000 0 77774 32STQT 4,3I F2TNH033
    00041 0 40200 0 77774 36SUBT 4,31 F2TNH037
    00044 0 60100 0 77774 39STOT 4,31 F2TNH040
    00046 0 22100 0 77774 41DVPT F2TNH042
    00047−0 60000 0 77774 42STQT F2TNH043
    00050 0 50000 0 77774 43CLAT F2TNH044
    00062 0 60100 0 77774 53STOT F2TNH054
    00065 0 24100 0 77774 56 T10 FDPT F2TNH057
    00066−0 60000 0 77774 57STQT F2TNH058
    00067 0 50000 0 77774 58CLAT F2TNH059
    00100 0 60100 0 77774 67STOT F2TNH068
    00102 0 24100 0 77774 69FDPT F2TNH070
    00103−0 60000 0 77774 70STQT F2TNH071
    00104 0 50000 0 77774 71CLAT F2TNH072
    00111 0 60100 0 77774 76STOT F2TNH077
␣␣␣␣B1 = 85
  1. Definition
    00125+173433723377 89 B1 DEC.01732867951 F2TNH090
  2. Reference
    00105 0 30000 0 00125 72FADB1 F2TNH073
␣␣␣␣C1 = 86
  1. Definition
    00126+204704333566 90 C1 DEC14.1384114018 F2TNH091
  2. Reference
    00101 0 50000 0 00126 68CLAC1 F2TNH069
␣␣␣␣CH = 80
  1. Definition
    00120+201400000000 84 CH OCT201400000000 F2TNH085
  2. References (3)
    00010 0 50000 0 00120 11CLACH IF SO LET TANH X EQUAL ONE F2TNH012
    00052 0 40000 0 00120 45ADDCH ADD ONE ANO CONVERT TO FLOATING POINT F2TNH046
    00055 0 50000 0 00120 48CLACH F2TNH049
␣␣␣␣D1 = 87
  1. Definition
    00127+211535527021 91 D1 DEC349.6699888 F2TNH092
  2. Reference
    00077 0 30000 0 00127 66FADD1 COMPUTE CONTINUED FRACTION F2TNH067
␣␣␣␣SQ = 32765
  1. Definition
    77775 96 SQ EQU−3 F2TNH097
  2. References (4)
    00030 0 60100 0 77775 27STOSQ COMPUTE CONTINUED FRACTION F2TNH028
    00036 0 56000 0 77775 33LDQSQ 8,27 F2TNH034
    00076 0 60100 0 77775 65STOSQ F2TNH066
    00107 0 26000 0 77775 74FMPSQ F2TNH075
␣␣␣␣T1 = 43
  1. Definition
    00053 0 40000 0 77777 46 T1 ADDM F2TNH047
␣␣␣␣T2 = 57
  1. Definition
    00071 0 56000 0 77776 60 T2 LDQF COMPUTE TANH 4LOGE IF X SMALL F2TNH061
  2. Reference
    00024 0 10000 0 00071 23TZET2 IF ARGUMENT LESS THAN .25 TRANSFER F2TNH024
␣␣␣␣T5 = 6
  1. Definition
    00006 0 40200 0 00114 9 T5 SUBMAX TEST IF ARGUMENT LARGER THAN 12 F2TNH010
  2. Reference
    00003 0 12000 0 00006 6TPLT5 F2TNH007
␣␣␣␣T6 = 10
  1. Definition
    00012 0 50000 0 77776 13 T6 CLAF F2TNH014
  2. Reference
    00007−0 12000 0 00012 10TMIT6 F2TNH011
␣␣␣MAX = 76
  1. Definition
    79 CONSTANTS F2TNH080
    00114+017000000000 80 MAX OCT017000000000 F2TNH081
  2. Reference
    00006 0 40200 0 00114 9 T5 SUBMAX TEST IF ARGUMENT LARGER THAN 12 F2TNH010
␣␣␣MIN = 77
  1. Definition
    00115+165544410070 81 MIN DEC.00034 F2TNH082
  2. Reference
    00002 0 40200 0 00115 5SUBMIN F2TNH006
␣␣␣SH1 = 16
  1. Definition
    A00020 0 76500 0 00000 19 SH1 LRS SEPARATE INTEGER AND FRACTION F2TNH020
  2. Reference
    00016 0 62100 0 00020 17STASH1 F2TNH018
␣␣␣T10 = 53
  1. Definition
    00065 0 24100 0 77774 56 T10 FDPT F2TNH057
  2. Reference
    00113 0 02000 0 00065 78TRAT10 F2TNH079
␣␣CHAR = 79
  1. Definition
    00117+000000000242 83 CHAR OCT242 F2TNH084
  2. Reference
    00015 0 40000 0 00117 16ADDCHAR CONVERT T0 FIXED POINT F2TNH017
␣␣LOGE = 78
  1. Definition
    00116+270524354513 82 LOGE DEC1.4426950409B1 F2TNH083
  2. Reference
    00017 0 20000 0 00116 18MPYLOGE X TIMES LOG E BASE 2 F2TNH019
␣␣TANH = 0
  1. Definition
    2FLOATING POINT HYPERBOLIC TANGENT SUBROUTINE, FORTRAN VERSIONF2TNH003
    00000 0 60100 0 77776 3 TANH STOF F2TNH004
␣4LOGE = 88
  1. Definition
    00130+203561250731 92 4LOGE DEC5.7707801636 F2TNH093
  2. References (2)
    00072 0 26000 0 00130 61FMP4LOGE COMPUTE X TIMES 4LOGE F2TNH062
    00110 0 30000 0 00130 75FAD4LOGE F2TNH076