␣␣␣␣␣A = 43
  1. Definition
    00053+127325604305 47 A DEC87.417497202B8 F2EXP046
  2. Reference
    00021 0 40000 0 00053 20ADDA 8,27 SCALING F2EXP021
␣␣␣␣␣B = 44
  1. Definition
    00054+046477071523 48 B DEC617.9722695B12 F2EXP047
  2. Reference
    00023 0 50000 0 00054 22CLAB 12,23 F2EXP023
␣␣␣␣␣C = 45
  1. Definition
    00055+010676467774 49 C DEC.03465735903B0 F2EXP048
  2. Reference
    00027 0 20000 0 00055 26MPYC 0,35 8,27 FZEXP027
␣␣␣␣␣D = 46
  1. Definition
    00056+237214030720 50 D DEC9.9545957821B4 F2EXP049
  2. Reference
    00032 0 40000 0 00056 29ADDD 4,3I F2EXP030
␣␣␣␣␣F = 32766
  1. Definition
    77776 53 F EQU−2 F2EXP052
  2. References (4)
    00016−0 60000 0 77776 17STQF F2EXP018
    00017 0 20000 0 77776 18MPYF COMPUTE FRACTION SQUARED F2EXP019
    00033 0 40200 0 77776 30SUBF 4,3I F2EXP031
    00035 0 50000 0 77776 32CLAF 5,3I NUMERATOR EOUALS 2F F2EXP033
␣␣␣␣␣M = 32767
  1. Definition
    51 ERASABLES F2EXP050
    77777 52 M EQU−1 F2EXP051
  2. References (3)
    00000 0 60100 0 77777 3 EXP STOM STORE ARGUMENT F2EXP004
    00014 0 60100 0 77777 15STOM F2EXP016
    00044 0 40000 0 77777 39 T1 ADDM F2EXP039
␣␣␣␣␣T = 32764
  1. Definition
    77774 55 T EQU−4 F2EXP054
  2. References (8)
    00022 0 60100 0 77774 21STOT 8,27 F2EXP022
    00024 0 22100 0 77774 23DVPT 8,27 4,31 F2EXP024
    00025−0 60000 0 77774 24STQT 4,31 F2EXP025
    00031 0 40200 0 77774 28SUBT 4,3I F2EXP029
    00034 0 60100 0 77774 31STOT 4,3I F2EXP032
    00036 0 22100 0 77774 33DVPT 4,31 1,34 F2EXP034
    00037−0 60000 0 77774 34STQT F2EXP035
    00040 0 50000 0 77774 35CLAT F2EXP036
␣␣␣␣CH = 41
  1. Definition
    00051+201400000000 45 CH OCT201400000000 F2EXP045
  2. Reference
    00043 0 30000 0 00051 38FADCH
␣␣␣␣SQ = 32765
  1. Definition
    77775 54 SQ EQU−3 F2EXP053
  2. References (2)
    00020 0 60100 0 77775 19STOSQ COMPUTE CONTINUED FRACTION F2EXP020
    00026 0 56000 0 77775 25LDQSQ 8,27 F2EXP026
␣␣␣␣T1 = 36
  1. Definition
    00044 0 40000 0 77777 39 T1 ADDM F2EXP039
  2. Reference
    00004 0 04000 0 00044 7TLQT1 IF TOO SMALL RETURN WITH ZERO F2LXP008
␣␣␣CH1 = 42
  1. Definition
    00052+201000000000 46 CH1 OCT201000000000
  2. Reference
    00042−0 50100 0 00052 37ORACH1
␣␣␣EXP = 0
  1. Definition
    2FLOATING POINT EXPONENTIAL SUBROUTINE, FORTRAN VERSION F2EXP003
    00000 0 60100 0 77777 3 EXP STOM STORE ARGUMENT F2EXP004
␣␣␣MAX = 38
  1. Definition
    41 OONSTANTS F2EXP041
    00046+207540071260 42 MAX DEC88.028 F2EXP042
  2. Reference
    00001 0 56000 0 00046 4LDQMAX TEST IF 0UT OF RANGE F2EXP005
␣␣␣SH1 = 10
  1. Definition
    A00012 0 76500 0 00000 13 SH1 LRS SEPARATE INTEGER AND FRACTION F2EXP014
  2. Reference
    00010 0 62100 0 00012 11STASH1 F2EXP012
␣␣CHAR = 40
  1. Definition
    00050+000000000242 44 CHAR OCT242 F2EXP044
  2. Reference
    00007 0 40000 0 00050 10ADDCHAR CONVERT TO FIXED POINT F2EXP011
␣␣LOGE = 39
  1. Definition
    00047−270524354513 43 LOGE DEC−1.4426950409B1 F2EXP043
  2. Reference
    00011 0 20000 0 00047 12MPYLOGE X TIMES LOG E BASE 2 F2EXP013