␣␣␣␣␣S = 83
  1. Definition
    00123 0 40000 0 00141 91 S ADDCHAR+1 126 F2SIN092
  2. Reference
    00074−3 00002 1 00123 68TXLS,1,2 F2SIN069
␣␣␣␣␣Z = 32765
  1. Definition
    77775 121 Z EQUCOMMON+1 F2SIN115
  2. References (2)
    00057 0 56000 0 77775 55 COMCA LDQZ COMMON CALC., B3 F2SIN056
    00060−0 20000 0 77775 56MPRZ F2SIN057
␣␣␣␣PI = 94
  1. Definition
    00136+144417665210 104 PI DEC3.14159265359B3 F2SIN103
  2. References (2)
    00014 0 22000 0 00136 18DVHPI PI...B3, BQ...35 F2SIN019
    00044 0 40200 0 00136 43SUBPI LARGER THAN PIHLF F2SIN044
␣␣␣␣SX = 21
  1. Definition
    00025 1 00002 1 00057 27 SX TXICOMCA,1,2 COSC, XR...4 F2SIN028
  2. References (2)
    00037−0 53400 1 00025 38LXDSX,1 F2SIN039
    00042−0 53400 1 00025 41LXDSX,1 F2SIN042
␣␣␣COS = 0
  1. Definition
    2FORTRAN LIBRARY VERSION OF IB SIN 1 F2SIN003
    3COMPUTES SINE OR COSINE OF A SINGLE PRECISION NORMALIZED F2SIN004
    4FLOATING POINT ARGUMENT. TSX SIN OR TSX COS . REL. ERROR F2SIN005
    5LESS THAN 1/2 X 10 TO -8. TIMING ABOUT 2.03 SIN, 2.I1 C0S. F2SIN006
    00000 0 30200 0 00153 6 COS FSBFPHLF F2SIN007
␣␣␣ERR = 18
  1. Definition
    00022 0 02000 0 00117 24 ERR TRAFINI−1 F2SIN025
  2. Reference
    00010 3 00244 1 00022 14TXHERR,1,164 F2SIN015
␣␣␣LOW = 88
  1. Definition
    00130 0 50000 0 00120 96LOW CLAFINI F2SIN097
  2. Reference
    00026−3 00162 1 00130 29 SPEC TXLLOW,1,114 F2SIN030
␣␣␣SIN = 2
  1. Definition
    00002 0 60100 0 77774 8SIN STOSPMLT F2SIN009
␣␣␣SOR = 32766
  1. Definition
    77776 122 SOR EQUCOMMON+2 F2SIN116
  2. References (8)
    00063 0 60100 0 77776 59STOSOR F2SIN060
    00065 0 22000 0 77776 61DVHSOR F2SIN062
    00066−0 60000 0 77776 62STQSOR F2SIN063
    00067 0 50000 0 77776 63CLASOR F2SIN064
    00075 0 60100 0 77776 69STOSOR F2SIN070
    00103 0 22000 0 77776 75DVHSOR F2SIN076
    00104−0 60000 0 77776 76STQSOR F2SIN077
    00105 0 50000 0 77776 77CLASOR F2SIN078
␣␣␣ZSQ = 32767
  1. Definition
    77777 123 ZSQ EQUCOMMON+3 F2SIN117
  2. References (7)
    00061 0 60100 0 77777 57STOZSQ B6 F2SIN058
    00072 0 40000 0 77777 66ADDZSQ F2SIN067
    00076 0 50000 0 77777 70CLAZSQ F2SIN071
    00100 0 40000 0 77777 72ADDZSQ F2SIN073
    00110 0 40200 0 77777 80SUBZSQ F2SIN081
    00124 0 60100 0 77777 92STOZSQ F2SIN093
    00125 0 56000 0 77777 93LDQZSQ F2SIN094
␣␣CHAR = 96
  1. Definition
    00140+177000000000 106 CHAR OCT177000000000 F2SIN105
  2. References (4)
    00052 0 40000 0 00140 49ADDCHAR F2SIN050
    00053 0 30000 0 00141 50FADCHAR+1 200 F2SIN05I
    00116 0 36100 1 00145 86ACLCHAR+5,1 127 OR 128 F2SIN087
    00123 0 40000 0 00141 91 S ADDCHAR+1 126 F2SIN092
␣␣EQUA = 19
  1. Definition
    00023 0 40200 0 00137 25 EQUA SUBPIHLF F2SIN026
  2. Reference
    00047 0 04000 0 00023 46TLQEQUA F2SIN047
␣␣FINI = 80
  1. Definition
    U00120 3 4 00122 88 FINI TXHFINI+2,4,.. F2SIN089
  2. References (7)
    00022 0 02000 0 00117 24 ERR TRAFINI−1 F2SIN025
    U00120 3 4 00122 88 FINI TXHFINI+2,4,.. F2SIN089
    00122 0 14000 0 00121 90TOVFINI+1 TURN OFF F2SIN091
    00127 0 02000 0 00117 95TRAFINI−1 F2SIN096
    00130 0 50000 0 00120 96LOW CLAFINI F2SIN097
    00133 0 02000 0 00117 99TRAFINI−1 F2SIN098
    00120 103 INDIC SYNFINI F2SIN102
␣␣REDA = 32765
  1. Definition
    77775 120 REDA EQUCOMMON+1 F2SIN114
  2. References (3)
    00024 0 60200 0 77775 26SLWREDA F2SIN027
    00036 0 60100 0 77775 37STOREDA F2SIN038
    00050 0 60100 0 77775 47STOREDA ANGLE IN FIRSF QUADRANT, B3 F2SIN048
␣␣RTSH = 77
  1. Definition
    00115 0 77100 1 00015 85 RTSH ARS13,1 9 OR 8 F2SIN086
  2. Reference
    00114 1 00001 1 00115 84TXIRTSH,1,1 XR...5 FOR OCOS F2SIN085
␣␣SAVE = 17
  1. Definition
    00021−3 00000 0 00041 23 SAVE TXLFRLAR,0,** F2SIN024
  2. References (2)
    00004−0 63400 1 00021 10SXDSAVE,1 F2SIN011
    00117−0 53400 1 00021 87LXDSAVE,1 F2SIN088
␣␣SPEC = 22
  1. Definition
    28 SPECIAL CASE, ANGLE NEED NOT BE REDUCED F2SIN029
    00026−3 00162 1 00130 29 SPEC TXLLOW,1,114 F2SIN030
  2. References (2)
    00012−3 00202 1 00026 16TXLSPEC,1,130 F2SIN017
    00030 0 02000 0 00032 31TRASPEC+4 F2SIN032
␣␣TEST = 98
  1. Definition
    00142+011463146314 108 TEST DEC.3B3 F2SIN107
  2. References (2)
    00034 0 56000 0 00142 35LDQTEST F2SIN036
    00046 0 56000 0 00142 45LDQTEST F2SIN046
␣COMCA = 47
  1. Definition
    54 COMMON CALCULATION FOR SIN AND COS F2SIN055
    00057 0 56000 0 77775 55 COMCA LDQZ COMMON CALC., B3 F2SIN056
  2. References (2)
    00025 1 00002 1 00057 27 SX TXICOMCA,1,2 COSC, XR...4 F2SIN028
    00040 0 02000 0 00057 39TRACOMCA F2SIN040
␣CONST = 99
  1. Definition
    00143+140450575062 109 CONST DEC24.1448946943B6,2287.443195687B13,50.0302454854B6 F2SIN108
  2. References (5)
    00062 0 40000 1 00147 58ADDCONST+4,1 24.1B6, 50. B6 F2SIN059
    00064 0 50000 1 00150 60CLACONST+5,1 2287B13, 1042B11 F2SIN061
    00070 0 40000 1 00153 64ADDCONST+8,1 82.5B7, -19.B5 F2SIN065
    00102 0 40000 0 00150 74ADDCONST+5 -3276B13 F2SIN075
    00106 0 40000 0 00152 78ADDCONST+7 19.477B5 F2SIN079
␣FLOAT = 41
  1. Definition
    00051 0 76500 0 00004 48 FLOAT LRS4 F2SIN049
␣FPHLF = 107
  1. Definition
    00153+201622077325 117 FPHLF DEC1.57079632679 F2SIN111
  2. Reference
    00000 0 30200 0 00153 6 COS FSBFPHLF F2SIN007
␣FRLAR = 33
  1. Definition
    00041 0 76000 0 00003 40 FRLAR SSP F2SIN041
  2. References (3)
    00016 0 16200 0 00041 20TQPFRLAR F2SIN021
    00021−3 00000 0 00041 23 SAVE TXLFRLAR,0,** F2SIN024
    00035 0 04000 0 00042 36TLQFRLAR+1 F2SIN037
␣INDIC = 80
  1. Definition
    102 CONSTANTS F2SIN101
    00120 103 INDIC SYNFINI F2SIN102
  2. References (2)
    00007−0 63400 4 00120 13SXDINDIC,4 OVERFLOW TO BE RESTORED F2SIN014
    00134−0 63400 0 00120 100 NOVFL SXDINDIC,0 CLEAR DECREMENT OF INDIC F2SIN099
␣LRTSH = 11
  1. Definition
    00013 0 76500 1 00250 17 LRTSH LRS168,1 B3 F2SIN018
  2. Reference
    00031 3 00201 1 00013 32TXHLRTSH,1,129 F2SIN033
␣NOVFL = 92
  1. Definition
    00134−0 63400 0 00120 100 NOVFL SXDINDIC,0 CLEAR DECREMENT OF INDIC F2SIN099
  2. Reference
    00006−0 14000 0 00134 12 OVTST TNONOVFL OVERFLOW TEST F2SIN013
␣OVTST = 6
  1. Definition
    00006−0 14000 0 00134 12 OVTST TNONOVFL OVERFLOW TEST F2SIN013
  2. Reference
    00135 0 02000 0 00010 101TRAOVTST+2 F2SIN100
␣PIHLF = 95
  1. Definition
    00137+062207732503 105 PIHLF DEC1.57079632679B3 F2SIN104
  2. References (2)
    00023 0 40200 0 00137 25 EQUA SUBPIHLF F2SIN026
    00043 0 34000 0 00137 42CASPIHLF F2SIN043
␣SPMLT = 32764
  1. Definition
    77774 119 SPMLT EQUCOMMON F2SINI13
  2. References (7)
    00002 0 60100 0 77774 8SIN STOSPMLT F2SIN009
    00020 0 60100 0 77774 22STOSPMLT F2SIN023
    00054 0 56000 0 77774 51LDQSPMLT F2SIN052
    00056 0 60100 0 77774 53STOSPMLT F2SIN054
    00111 0 56000 0 77774 81LDQSPMLT F2SIN082
    00126 0 26000 0 77774 94FMPSPMLT F2SIN095
    00132 0 50000 0 77774 98CLASPMLT F2SIN97B
COMMON = 32764
  1. Definition
    77774 118COMMON EQU−4 F2SIN112
  2. References (5)
    77774 119 SPMLT EQUCOMMON F2SINI13
    77775 120 REDA EQUCOMMON+1 F2SIN114
    77775 121 Z EQUCOMMON+1 F2SIN115
    77776 122 SOR EQUCOMMON+2 F2SIN116
    77777 123 ZSQ EQUCOMMON+3 F2SIN117